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Abstract 

Most current multi-player 3D games can only be 
played on dedicated platforms, requiring specifically 
designed content and communication over a prede-
fined network. To overcome these limitations, the 
OLGA (On-Line GAming) consortium has devised a 
framework to develop distributive, multi-player 3D 
games. Scalability at the level of content, platforms 
and networks is exploited to achieve the best trade-
offs between complexity and quality. Besides, stan-
dardized content compression formats (MPEG-4, 
JPEG 2000) are used in OLGA’s framework, enabling 
easy deployment over existing infrastructure, while 
keeping hooks to well-established practices in the 
game industry. 

1. Introduction 

OLGA (www.ist-olga.org) is the short name of a 
research project partially funded, from April 2004 to 
September 2006, by the European Commission under 
FP6-IST (cordis.europa.eu/ist). Its full name is “A 
unified scalable framework for On-Line GAming”, as 
its ultimate goal is to provide a framework for devel-
oping scalable 4D (animated 3D) game content that 
could be adaptively streamed to a variety of terminals 
over heterogeneous networks; and to do so by using 
(and improving, whenever possible) de jure interna-
tional standard coding formats such as MPEG-4 AFX 
(Animated Framework eXtension) [8]. 

Thanks to OLGA’s scalable 4D content authoring 
and compression tools, it is possible to render the 
same textured 4D content at wildly different qualities 
and frame rates, according to each network and termi-
nal profile. Figure 1 gives an idea of how OLGA’s 
game test bed, named GOAL, runs on a PC (Personal 
Computer) and a CP (Cell Phone). We decided as well 
to enable the players to publish their own 4D content 
for its use in the game: OLGA’s tools are not only 
provided to game designers, but also to end users. 

Figure 1. Screen shots from both the PC and CP 
versions of GOAL, OLGA’s game. 

Section 2 elaborates on OLGA’s tools and ex-
plains how scalable coding can be exploited for adapt-
ing the execution time in a specific terminal, under 
excellent quality vs. bit-rate vs. memory vs. execution 
time trade-offs of the 3D geometry, textures and ani-
mation. But OLGA’s mission was not only producing 
scalable 4D content authoring and compression tools. 
Another two of its main goals were to deploy a scal-
able game platform (an infrastructure consisting of 
both servers and network) that would adapt content in 
a distributed way, and to provide a set of terminals to 
validate OLGA’s technology by implementing GOAL 
on them. Sections 3 and 4 comment on how those 
other OLGA targets were achieved. Finally, Section 5 
concludes our presentation. 

2. Standard scalable 4D content 

A few years ago, high quality 3D graphics were a 
crucial asset for making a computer game successful. 
Nowadays, they are practically taken for granted: for 
current players, 4D content looking great is not a bo-
nus but nearly a must. And creating compelling 4D 
objects and characters is a very time-consuming task 
even when that content is not scalable. 



A key ingredient of OLGA is its software toolset 
for content creation, conversion and compression, 
which provides game designers, as well as end users, 
with flexible solutions to create scalable 4D content 
from scratch, or to recycle already existing 4D content 
to have it be scalable, and to compress it efficiently. 
Scalable (off-line) coding is of the utmost importance 
for OLGA to enable the continuous adaptation (at run-
time, under constrained system resources) of the 4D 
content parameters, so that the best trade-off between 
instantaneous 3D rendering quality and animation 
speed can be achieved. Such adaptation is possible 
thanks to progressive bit-streams that can be stripped 
through packet selection mechanisms for view-
dependent decoding (or even streaming) scenarios, in 
which only the visible portions of a 3D object geome-
try and texture are transmitted and decoded at the 
appropriate quality. The animation quality can also be 
scaled by performing only those transformations yield-
ing a visible effect for the player. 

Another key ingredient of OLGA, besides scal-
ability, was compliance to the maximum possible ex-
tent to international standards. MPEG-4 was chosen 
because it already featured the following tools for 
scalable 4D content when OLGA started: 
• 3D geometry (see Section 2.1): among the several 

tools targeting the compression of polygonal meshes 
in MPEG-4 AFX, we chose the one based on WSSs 
(Wavelet Subdivision Surfaces). 

• 2D textures (see Section 2.2): both MPEG-4’s na-
tive format for textures, VTC (Visual Texture Cod-
ing), and JPEG 2000 are also wavelet-based. We 
chose JPEG 2000, but made sure MPEG-4 would 
support it. 

• Animation (see Section 2.3): BBA (Bone-Based 
Animation) is a sub-toolset of MPEG-4 AFX per-
mitting to animate generic articulated characters 
based on the “skeleton and skin” paradigm. 

2.1. 3D geometry 

Several 3ds Max plug-ins were implemented to 
enable an artist to automatically simplify an arbitrary 
connectivity 3D mesh, remesh it to have subdivision 
connectivity (see Figure 2), and code it in a scalable 
manner: 
• Our 3D mesh simplification plug-in for 3ds Max, 

olgaQAttSimp, is based on the QEM (Quadric Error 
Metrics) technique [4] and yields significant im-
provements over 3ds Max’s native Optimize: the 
geometry obtained is much more efficient (in terms 
of triangle count for a given approximation error) 
and the texture coordinates are correctly handled. 
Compared to the MultiRes modifier that comes also 

standard with the newer versions of 3ds Max, ol-
gaQAttSimp is very efficient when it comes to 
smooth content, and roughly equivalent for “not-
well-rounded” shapes. But, in all cases, it allows the 
artist to control more closely the mesh decimation 
and obtain more subjectively faithful final results by 
selecting certain regions to be preserved. A simpli-
ficator software module has also been developed 
based on olgaQAttSimp, and integrated in the LCSs 
(Local Content Servers: see Section 3) to allow run-
time vertex removal. 

Figure 2. An arbitrary connectivity mesh (left) 
modeled as a WSS after base mesh extraction (middle)
and remeshing with subdivision connectivity (right).

• The coding can comply to the WSS tool already in 
MPEG-4 AFX, a.k.a. “WaveSurf” [9], or follow the 
PLTW (Progressive Lower Trees of Wavelet coeffi-
cients) technique [1], explained below and proposed 
to MPEG for its adoption in a future Amendment of 
AFX. The two corresponding decoders (PLTW-
based and MPEG-4-compliant) are both integrated 
in OLGA’s software framework for the PC plat-
form. As for the CP platform, only the PLTW-based 
decoder has been ported to Symbian OS, since it has 
less memory requirements than WaveSurf. 

2.1.1. Geometry quality/bit-rate/memory trade-off 
Once a 3D shape is modeled as a WSS, it is fit for 
multi-resolution coding. Our research in this field 
focused on new methods that could be more suitable 
for resource-limited devices than the SPIHT-based 
ones, like the WaveSurf tool. For a decade already, the 
SPIHT (Set Partitioning In Hierarchical Trees) tech-
nique has been the reference against which to compare 
other coding techniques based on the wavelet trans-
form. The problem of SPIHT is that, although its bit-
streams are SNR scalable, they are not spatially scal-
able, and cannot be easily parsed according to a given 
maximum resolution (i.e., number of pixels or trian-
gles) or LOD (Level Of Detail) tolerated by the de-
coder. There is little point in encoding a 3D mesh with 



thousands of triangles if the CP that must render it can 
barely handle hundreds. Furthermore, from the mem-
ory viewpoint, having a perfectly SNR scalable bit-
stream that may have bits corresponding to details of 
LOD 3 before those of LOD 1 makes also little sense, 
as the decoding process alone will completely eat up 
all the CP resources: even if memory is not allocated 
for the triangles of LOD 3 (which will never be ren-
dered), their detail trees must be created to follow the 
SPIHT algorithm. 

The main novelty of the PLTW technique [1] is 
that the resulting bit-stream does not impose on the 
less powerful decoders the need of building detail 
trees as deep as required by the maximum LOD en-
coded, because the wavelet coefficients are sent on a 
per-LOD basis, thus achieving “local SNR scalability” 
within “global spatial scalability”. With PLTW, the set 
of coefficients is also hierarchically traversed, but they 
are scanned in LODs, which yields a spatially scalable 
bit-stream. The decoder first receives all the coeffi-
cients corresponding to a LOD and, only when it has 
finished reading them, it proceeds (if it has enough 
resources) with those from the next. However, thanks 
to bit-plane encoding, bits from each LOD are ordered 
in such a way that the first to arrive are the ones that 
contribute more to lower the reconstruction error, 
while bits from negligible coefficients arrive last. 

A comparison of our PLTW coder vs. two other 
SPIHT-based coders is illustrated by Figure 3, which 
plots, for two different 3D models, the rate distortion 
curves for: i) our PLTW coder, which does include 
AC (Arithmetic Coding) as a final step; ii) a version of 
the SPIHT algorithm with AC; and iii) the WaveSurf 
tool of MPEG-4, which also uses SPIHT, but without 
AC. Except at very low rates, where PLTW is still 
reconstructing upper LODs and does not benefit from 
the smoothing effect of subdivision (while its competi-
tors do), PLTW always results in higher PSNRs for 
the same bit-rate. It is also noticeable how none of the 
SPIHT-based coders is able to reach the same PSNR 
as the PLTW coder even employing 160% 
(SPIHT-AC) or 330% (MPEG-4) of the bits used by 
PLTW for the same quantization set of values. The 
poor results of the WaveSurf coder are mostly due to 
the overhead introduced to support view-dependent 
transmission of coefficient trees. 

2.1.2. Geometry quality/bit-rate/run time trade-off 
The use of compressed, multi-resolution content en-
ables the adaptation of its complexity (and hence also 
its visual quality) to the available bandwidth and ter-
minal resources. WSSs permit to code the shape of a 
3D model in a multi-resolution manner with very good 
compression, but require a large CPU overhead for a 

fine-grained, on-the-fly control of the content com-
plexity in execution time regulated applications such 
as networked, interactive 3D games. In fact, the CPU 
overhead for controlling the execution time with 
MPEG-4’s WaveSurf tool is sometimes as large as the 
3D graphics rendering execution time itself. 
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Figure 3. PLTW vs. SPIHT and MPEG-4’s WaveSurf 
for the Max Planck (top) and bunny (bottom) models.

Moreover, typical implementations of WSSs mul-
tiply by four the number of triangles in every subdivi-
sion step, which enables only very discrete LOD man-
agement, and therefore yields abrupt and often dis-
turbing quality changes while only supporting coarse-
grained adaptation to a target execution time. Besides 
improving the compression efficiency and the ade-
quacy to weak terminals with the PLTW technique, 
we introduced some add-ons to enable a low-
complexity, yet efficient fine-grained quality/run time 
trade-off in execution time control. 

To achieve this target, the WSS mesh regions are 
progressively decoded in a continuous LOD fashion, 
by subdividing only the important regions of the ge-



ometry. The importance and order for subdividing the 
triangles is given by their impact on the error to the 
target mesh, i.e. the triangles that decrease this error 
the most are subdivided first. These non-uniformly 
subdivided meshes allow a fine-grained control of the 
resolution of the geometry, resulting in small varia-
tions of the visual quality while achieving a target 
execution time. With special subdivision platform 
mapping techniques using LOD-based moving win-
dows [13], the complexity of the subdivision control is 
largely reduced, resulting in an overhead of only a 
small percentage in the final decoding and rendering 
execution time for two different platforms: a high-end 
PC and a low-end CP. 

In order to actually steer the execution time con-
trol, the execution time, and especially the rendering 
time, should be estimated for a large range of triangle 
budgets. We have used previously reported perform-
ance models for the software and hardware rendering 
pipelines [12], according to which the most important 
parameters are the number V of processed vertices (for 
the vertex processing) and the number F of fragments 
(for the rasterizing); additional parameters important 
for the software model are the number S of spans and 
the number T of visible triangles. The coefficients of 
the performance model are derived with an off-line 
calibration procedure that first measures on the device 
the rendering time for many different objects with 
different sizes (F) and complexity (V and T), and then 
computes the average values of the coefficients cα 
(α ∈ {T, F, S}) with multi-linear regression analysis. 

2.2. 2D textures 

After carrying out a preliminary comparative 
study between JPEG, JPEG 2000 [5] and MPEG-4’s 
VTC [7] with respect to the considered criteria and 
desired functionalities within OLGA, the JPEG 2000 
technology was selected, and several tools developed: 
• A plug-in enables 3ds Max to import and export 

JPEG 2000-compliant textures (at the time of writ-
ing, the last version of 3ds Max, nr. 9, did not sup-
port natively JPEG 2000 yet). 

• Tools enabling view-dependent texture streaming 
thanks to JPEG 2000 and JPIP (JPEG 2000 Internet 
Protocol), in which a bit-stream packet selection 
mechanism takes the user’s viewpoint information 
into account. Implementations were made for both 
PC and CP, and both the JPEG 2000 and JPIP de-
coders were optimized towards their usage in a 3D 
graphics texture context, and extended with addi-
tional control tools tailored to a view-dependent tex-
ture streaming scenario. The JPIP cache mechanism 
is adapted to minimize the CP memory usage. 

• A JPEG 2000 bit-stream packet selector has been 
integrated in the simplificator module running on 
LCSs (see Section 3), that supports resolution scal-
ing and bit-plane removal. The LOD selection takes 
into account both the available bandwidth between 
LCS and terminal, and the terminal screen resolu-
tion. 

But OLGA’s most important contribution with re-
spect to textures has little to do with JPEG 2000 (ex-
cept for having succeeded at having MPEG-4 support 
it as one of its native image formats), as in fact the 
work described above mostly consisted in implement-
ing and porting already existing algorithms and soft-
ware. At least conceptually, OLGA’s main contribu-
tion was detecting drawbacks in the current IFS (In-
dexed Face Set) tool of MPEG-4, inherited from 
VRML97, and defining the so-called “IFS++” format 
for 4D meshes with enriched vertex attributes such as 
multiple texture coordinates and bone-vertex influence 
coefficients. This activity led to another MPEG pro-
posal, which will hopefully be included as well in a 
future AFX Amendment. 

2.2.1. Geometry+texture quality/bit-rate trade-off 
Besides the execution time variation with the platform 
and content parameters [12], the linearity of the cost 
with the object parameters was also observed in the 
bit-rate of the textured MPEG-4 objects: with a re-
gression coefficient of 93% measured over 60 objects, 
the original MPEG-4 file size s decreases roughly bi-
linearly with the JPEG 2000 texture LOD (with nega-
tive slope m1) and the object mesh LOD (with nega-
tive slope m2). Small file sizes s with large (absolute 
values of) m1 and m2 correspond to small bit-rates that 
decrease very rapidly with decreasing LOD: the corre-
sponding objects representing only a small fraction of 
the total bit-rate at all LOD levels, they have low pri-
ority to be scaled for global (over all objects) bit-rate 
adaptation. On the other extreme, large s with small 
m1 and m2 correspond to large bit-rates that decrease 
very slowly with decreasing LOD, hence representing 
barely any opportunity of down-scaling for global bit-
rate adaptation. Consequently, large s with large m1 
and/or m2 are the most appealing candidates for bit-
rate adaptations: starting from a large full resolution 
bit-rate contribution, they scale very well by adjusting 
the texture and/or mesh LOD. 

Together with the improvements introduced by 
the geometry and animation coding tools, a global 
quality/bit-rate/execution time control can be obtained 
over all objects. The details of this intelligent global 
adaptation are beyond the scope of this paper, since it 
mainly consists in finding heuristics for approximately 
solving an NP-hard knapsack problem [3]. 



2.3. Animation 

Virtual characters are the most complex objects in 
a 3D game, and OLGA’s main vision, using scalable 
content within a standardized framework, was also 
applied to them. We used as a basis the BBA (Bone-
Based Animation) specification [10], a subset of 
MPEG-4 AFX defining a framework for representing 
and animating skinned models. On top of the generic 
compression used for the object and scene graphs, 
which is based on MPEG-4 BIFS (BInary Format for 
Scenes) [6], BBA defines a compressed representation 
of the animation parameters: bone transforms, muscle 
deformations and morphing weights. 

2.3.1. Animation quality/bit-rate trade-off 
To represent compactly the data required by the ani-
mation of textured 3D models (varying vertex attrib-
utes: essentially spatial coordinates but also normals 
or texture coordinates), some kind of redundancy in 
the animation is usually exploited: either temporal, 
and then linear or higher order interpolation is used to 
obtain the value of the desired attribute between its 
sampled value at certain key frames; or spatial, and 
then nearby vertices are clustered and a unique value 
or transform is assigned to each cluster. MPEG stan-
dardized an approach for compression of generic in-
terpolated data [6], able to represent coordinates and 
normal interpolation. While generic, this approach 
does not exploit the spatial redundancy. Concerning 
avatar animation, one of the most used animation con-
tent for games, a subset of MPEG-4 named FBA (Face 
and Body Animation) [7] allows compression at very 
low bit-rates. However, FBA imposes a rigid defini-
tion of the avatar and the difficulty to set up the pro-
posed deformation model. At the time the OLGA pro-
ject started, we were in the final stage of standardizing 
BBA, an extension of FBA within MPEG-4 AFX. 

BBA allows to represent animated, generic 3D 
objects based on the skin and bones paradigm, and to 
transmit the animation data at very low bit-rates by 
exploiting both the temporal and spatial redundancies 
of the animation signal. Within OLGA, we addressed 
the terminal/network adaptation, compression and 
rendering of BBA-based content. We considered the 
adaptation of animated content at two levels: geometry 
simplification constrained by dynamic behavior [11] 
and animation frame reduction. The dynamic behavior 
was expressed as constraints used to parameterize the 
QEM technique [4]. We introduced a weighting factor 
to specify how a given set of bones influences the 
simplification procedure. The biomechanical charac-
teristics (i.e., the relationships between skin and 
bones) were directly exploited to constrain and control 

the simplification procedure. We applied the devel-
oped algorithm to OLGA animated objects, previously 
converted into MPEG-4-compliant skinned models. 
Figure 4 shows the comparative results of animated 
model simplification for the developed approach, 
called AC-QEM, vs. plain QEM. 

QEM-simplified model
(491 vertices) 

AC-QEM-simplified model
(497 vertices) 

Figure 4. AC-QEM vs. QEM: 
qualitative results for the dragon model. 

Decoding and rendering animation data on small 
memory devices such as CPs requires server-side ani-
mation adaptation. Our approach was to reduce the 
number of the animation key frames so that the CP 
must only store a small quantity of information and 
use temporal interpolation. Animation simplification 
based on frame reduction was achieved by considering 
a progressive approach. Given an original animation 
sequence of n frames, to obtain a simplified sequence 
with m < n frames approximating the original curve, 
the area between the original curve and the recon-
structed one must be minimized. Considering this 
condition for all bones (or the subset of extreme 
bones), the optimization problem becomes difficult to 
solve. To overcome the complexity, we adopted an 
incremental approach: for each pair of three frames 
and for each extreme bone, we compute the area be-
tween the original signal and the one reconstructed by 
linear interpolation. We sum these areas for all ex-
treme bones and the minimum of the sums indicates 
the frame that has to be removed. We repeat the algo-
rithm until the number of removed frames equals n –
 m. After frame reduction, a new BBA stream is ob-
tained by encoding the m frames, and indicating for 
each frame the number of intermediate frames to be 
obtained by interpolation on the terminal. 

2.4. Complete 4D scene exporting in MPEG-4 

Finally, three 3ds Max plug-ins have been re-
leased that are able to export whole scenes containing 
several 4D objects: the first exports fully MPEG-4-



compliant textual (*.xmt) and binary (*.mp4) files; the 
second exports MPEG-4-compliant textual (*.txt) for 
animated characters: object graph definition and ani-
mation data; and the third outputs bit-streams that are 
not yet fully MPEG-4-compliant in that they follow 
OLGA’s IFS++ format and the PLTW-based coding 
of WSSs if the user so wishes. 

3. Servers and network 

The work related to servers and networks com-
prised the design, development and testing activities 
for the integration of the game test bed versions with 
the various versions of the network architecture. Both 
the PC and CP clients communicate and authenticate 
with a central lobby server, which manages a distrib-
uted network of game logic servers, called ZGSs 
(Zone Game Servers), and content adaptation and 
delivery servers, called LCSs (Local Content Servers), 
as opposed to the GCS (Global Content Server), 
which is a centralized resource, like the lobby server. 

Figure 5. Network architecture. 

Figure 5 illustrates OLGA’s network architecture, 
and the conceptual decoupling of the game network 
and the content delivery network. Load balancing and 
recovery mechanisms for these distributed networks of 
servers were implemented and successfully tested. The 
ZGSs have basic gaming functionality and can handle 
both player avatars and non-player characters, and 
both static and dynamic content. Instead of using a 
completely centralized solution, or one with a grid of 
homogeneous servers, we decided to have many het-
erogeneous ZGSs and LCSs, potentially hosted at the 
most powerful PCs of the players themselves. This 
allows a high degree of network scalability against the 
number of clients. 

3.1. Content delivery network 

Sending or updating game content (i.e., objects to 
be rendered) over the network is not a frequently used 

option, although multi-player on-line games pushing 
content through the network instead of locally storing 
all data do exist. However, most of these games re-
duce a priori the transmission bandwidth by subdivid-
ing the world in sub-worlds (3D tiles) and referencing 
pre-stored items, and texture data is seldom transmit-
ted. We chose instead to enable live update, distribu-
tion and adaptation of content. 

This adaptation requires extensive CPU power 
and memory. It is not practical to serve dynamically 
rendered content using a pure client-server architec-
ture, and that is why the P2P (Peer-to-Peer) model was 
chosen. The final key features of OLGA’s content 
delivery network are: 
• The system works through very heterogeneous 

networks and terminals, from high-end 3D graphic 
PCs connected to broadband Internet to mobile 
handsets connecting through 3G networks, all si-
multaneously active in the same game, and inter-
acting with each other. 

• The LCSs are not passive distribution nodes: on 
the contrary, they actively adapt the content to the 
client characteristics before delivery. Adaptation is 
done through the set of simplification tools de-
scribed in Section 2, and the LCSs cache the result 
of simplifications to save processing effort. 

Lobby 
Server GCS 

• A content adaptation server is installed on every 
client PC, and may be called upon dynamically by 
the Lobby Server to act as an LCS, depending on 
system conditions. 

• The amount of available content in the game is vari-
able, and can be updated from all nodes in the net-
work. Any game client can create its own content 
(in standard formats) and insert it into the game in 
real time, by uploading it to the GCS and using the 
ZGS to add a reference to the new content in the 
game; other players will download the content from 
their LCS as needed by game information provided 
by the ZGS. 

Given the P2P properties of the content delivery 
network, some scalability is inherent to it: new clients 
entering the game also bring new servers, thus level-
ing the capacity of the network. However, as playing 
the game makes the clients behave unpredictably from 
the point of view of content requests, a means of en-
suring dynamic adaptation to changing conditions is 
necessary and was implemented, although it is out of 
the scope of the present paper. 

4. Multi-platform 3D rendering 

As for the terminals, OLGA supports a variety of 
them, which were used within the project to test and 
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validate the scalability of game content. The main 
focus was on the realm of PCs, ranging from high-end 
gaming ones to laptops, but also mobile terminals 
were used. Two software platforms were produced: 
• GOAL, our game test bed, is available both on MS-

Windows-based PCs and on CPs running Sym-
bian OS v8 and supporting J2ME, notably the 
Nokia 6630. Game logic was implemented on both 
versions of the game, and decoders integrated for 
the simplified content downloaded from the net-
work. For the CP, a part of the software is pro-
grammed in Java, and the content decoders are pro-
grammed in Symbian, the Symbian framework be-
ing connected through a socket with the Java game 
engine. Rendering of the final graphics is done in 
software on the ARM embedded in the OMAP 
processor of the Nokia 6630. For screen shots of 
GOAL on both types of terminals, see Figure 1. 

 

  
Figure 6. OLGA models loaded in the PC (top) and 

CP (bottom) versions of the MPEG-4 player. 

• Besides, we developed a stand-alone MPEG-4 
player to visualize textured 4D content on both PCs 
and CPs: see Figure 6. We selected a small number 
of the scene graph nodes defined in the BIFS speci-
fication, which is enough to represent static and 
animated textured 3D objects. Then, starting from 
an open source BIFS decoder named GPAC 
(gpac.sourceforge.net), we derived a simplified 
BIFS decoder by implementing just the selected 
nodes. To allow texture mapping, we plugged in 
both JPEG and JPEG 2000 decoders and, to support 
animation, we optimized the initial BBA decoder we 
had developed for PC and also ported it to Sym-

bian OS v8. Finally, we developed the rendering 
layer by using DirectX 9 for PC and OpenGL ES for 
CP. 

4.1. 3D displays 

Special attention was given to the final rendering 
of 3D gaming content. Nowadays, new terminal and 
display developments drive new applications such as 
real 3D viewing. It is possible to design lenticular 
sheets to turn a flat, 2D matrix display into an auto-
stereoscopic multi-view display able to present the 
viewer with different images from various slightly 
different viewing angles. A format highly suitable for 
content transmission for such multi-view displays is 
video enriched with depth information. The format 
allows for minor displacements of foreground objects 
with respect to background scenery that are needed to 
present the viewer with the required different im-
ages [2]. 

Figure 7. GOAL screen shot: 
image and depth buffers (left), and actual image on 

auto-stereoscopic 3D display (right). 

To make the game experience more immersive, 
we endowed some terminals with such auto-stereosco-
pic 3D displays. Although, in theory, multiple images 
from different viewpoints can be rendered individually 
on the device, this solution is not optimal. From both 
the bandwidth and computational complexity points of 
view, it is desirable to render only one viewpoint and 
provide the depths of the pixels in the computed view 
to the display. Subsequently, a dedicated processor in 
the display can render the desired viewpoints at high 
quality [2]. In the GOAL terminals, we adopted the 
latter approach, and provide the depth information that 
is available in the z-buffer of the GPU to the 3D dis-
play. Therefore, the 3D content is transferred through 
the OLGA framework to the device, subsequently 
used to render the scene according to the current game 
status. Next, the frame and depth information are 
transferred to the 3D display, which renders the final 
scene in multi-view 3D, as suggested by Figure 7. 



5. Conclusions 

Today’s multi-player 3D games often rely on 
dedicated/ proprietary technological solutions for their 
servers (e.g., massively parallel, brute-force grid com-
puting), and scale down content a priori, according to 
the bandwidth or rendering power of the “weakest” 
node in the infrastructure. The OLGA (On-Line GAm-
ing) consortium opted for a completely different para-
digm: exploiting the scalability at the level of content, 
platforms and networks, possibly adapting the content, 
network and processing load to the distributive re-
sources available over the end-to-end delivery chain. 
OLGA’s 4D (animated 3D) content is not stored lo-
cally on one single server or local storage medium 
(e.g., DVD), but is rather distributed over a multitude 
of servers spread all over the network with adequate 
load-balancing and fault-tolerance policies, and possi-
bly hosted at the most powerful PCs of the players 
themselves! 

The 4D content is actively pushed from the avail-
able servers to the gaming terminals but, since 
OLGA’s 4D content authoring and compression tools 
are provided to end users as well as to game designers, 
the players can develop and publish their own content, 
which then becomes part of the persistent world, and 
benefits from OLGA’s standardized framework for 
adapting scalable content to the varying processing 
and bandwidth capacities of a heterogeneous infra-
structure, and to the very different rendering power of 
heterogeneous terminals. OLGA’s 4D content author-
ing and compression tools do not impose constraints 
on the content complexity: game developers and play-
ers are free in their creativity, and OLGA’s tools take 
care to adapt to any circumstances — not the other 
way around, as is usually the case… 

We managed to integrate a chain of content con-
version, transmission and rendering technologies into 
a heterogeneous infrastructure and terminal set, dem-
onstrating real-time interactive 4D content adaptation. 
We developed a distributive multi-player 4D game 
but, more importantly, we developed a framework to 
develop distributive multi-player 4D games, or other 
multimedia applications with heavy and highly vari-
able bandwidth and rendering requirements. And our 
framework hooks to a complete toolkit of standardized 
content representation/compression formats (MPEG-4, 
JPEG 2000), enabling easy deployment over existing 
infrastructure, while not impeding well-established 
practices in the game development industry. 
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