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ABSTRACT

3D triangle meshes are extremely used to model discrete
surfaces, and almost always represented with two tables:
one for geometry and another for connectivity. While the
raw size of a triangle mesh is of around 200 bits per vertex,
by coding cleverly (and separately) those two distinct kinds
of information it is possible to achieve compression ratios of
15:1 or more. Different techniques must be used depending
on whether single-rate vs. progressive bitstreams are sought;
and, in the latter case, on whether or not hierarchically
nested meshes are desirable during reconstruction.

Index Terms — 3D mesh compression, connectivity &
geometry coding, progressive meshes, subdivision surfaces.

1. INTRODUCTION

Surfaces embedded in three dimensional (3D) space are still
extremely often modeled as polygon meshes for simplicity.
In fact, as triangle meshes, since triangles are the basic geo-
metric primitives for standard 3D graphics hardware and for
many simulation algorithms. This is why much of the effort
in the field of static 3D model compression has been de-
voted to triangle meshes only, and why we will focus on
them in this paper, which is structured as follows. Section 2
sets an upper bound to the raw size of a 3D triangle mesh
after introducing the essential difference between the two
kinds of information it contains: geometry vs. connectivity.
Section 3 gives an outlook on the state-of-the-art techniques
and achievable bitrates for the coding of those two kinds of
information if a single-rate bitstream is enough. Section 4
explains what the limits are when a progressive bitstream is
desired, and the difference between progressive vs. hierar-
chical, wavelet-based coding of meshes. Finally, Section 5
concludes our presentation and Section 6 gives an extensive
list of selected references.

2. RAW SIZE OF A 3D TRIANGLE MESH

It would not be fair to compare the sizes of binary bit-
streams or files with those of any of the textual formats used
for triangle meshes, e.g., VRML [32]. But what practically

all those formats have in common is that they represent a
triangular mesh by using two separate tables: one for ge-
ometry, in which the three coordinates of each vertex are
given; and another for connectivity, listing the indices in the
vertex table of the three vertices forming each triangle.

If 32-bit floats are used for vertex coordinates and
32-bit integers for triangle-vertex references, a first, ample
estimate of the raw (uncompressed) size of a triangle mesh
with V' vertices and T triangles is S=3-32 (V+T) bit.
Since typical triangle meshes, and especially large ones,
have a vast majority of regular (i.e., valence 6) vertices,
their number of triangles is approximately twice that of ver-
tices, and S'=288 V'bit, i.e. 288 bits per vertex (bpv). A
more reasonable estimate can be obtained by arguing, as
King [13], that 32 bits are too many for the vertex indices of
most meshes, and that 3 |—10g2 (V)1 T bits suffice for connec-
tivity information, even without subjecting it to any sophis-
ticated coding (and almost without quantizing the vertex
coordinates: see Section 3.2.1). Therefore:

S=332V+[log, (M ]17T)bit=3 (32 +2[log, (V) ) bpv.
For a rather large mesh with, say, 50 K vertices (and hence
around 100 K triangles), this means 192 bpv, from which
half go to the geometry and half to the connectivity.

3. SINGLE-RATE COMPRESSION

Given the clear distinction between the connectivity infor-
mation and the geometry one, most mesh compression tech-
niques treat them separately. Most early work focused on
connectivity coding. The coding order of geometry data is
then determined by the way the connectivity is coded. Sev-
eral methods have been proposed recently to increase the
coding efficiency of the vertex information by making the
geometry drive the mesh traversal.

3.1. Connectivity coding

The problem of compactly encoding the connectivity has
been studied extensively as the theoretical problem of short
encoding of planar polygon graphs. Tutte [31] enumerated
all the different structures that a connectivity graph can as-
sume, showing that, in the case of arbitrary triangle graphs,
the encoding consumes at least log, (256/27) = 3.245 bpv.
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Figure 1: Topological surgery (courtesy of Taubin et al.)

The first attempts were made by Deering [5] and later im-
proved by Chow [4], who accelerated the data transfer from
the CPU to a special purpose graphics accelerator that im-
plemented the decoding algorithm. Turan [30] observed that
the connectivity of a planar graph can be encoded with a
constant number of bpv using two spanning trees: a vertex
spanning tree and a triangle spanning tree. Based on this
observation, Taubin and Rossignac [26] presented the Topo-
logical Surgery (TS) scheme to encode mesh connectivity.
The idea is to cut a given mesh along a selected set of cut
edges to make a planar polygon, as illustrated by Figure 1.
The mesh connectivity is then represented by the structures
of cut edges and the polygon, yielding 1 bpv for very regu-
lar meshes and 4 bpv on average otherwise.

Subsequently, Rossignac introduced Edgebreaker [23],
a simple and efficient traversal technique with an out-
standing worst-case bound of 4 bpv. The Mesh Collapse
Compression scheme by Isenburg and Snoeyink [11] per-
forms a sequence of edge contractions until a single vertex
remains to obtain 1-4 bpv.

Touma and Gotsman [29] pioneered a vertex-based tra-
versal scheme for entropy coding the valence of vertices in
triangular meshes with an average of 2 bpv for generic ones,
which vanishes to zero for regular grids. It is still consid-
ered as one of the best connectivity coders but, more re-
cently, Alliez and Desbrun developed slightly more efficient
methods based on a valence-driven approach [2] and on the
dual graph concept, introduced in the 3D mesh compression
context by Li[18], but employed by them as a means for
coding both vertex valences and facet degrees. Furthermore,
from the theoretical viewpoint, they proved, together with
other co-workers [13], that their connectivity coding tech-
niques are near-optimal, as they achieve Tutte’s entropy
bound for planar polygonal graphs, under certain reasonable
conditions — hence their claim for “near”-optimality.

3.2. Geometry coding
Connectivity reconstruction must frequently be lossless, but

state-of-the-art connectivity coders require only a few bits
per vertex and their performance is already close to the op-

timal. On the other hand, geometry data is often given in
precise floating point representation and thus eats up quite
an important part of the bit budget. Some applications may
tolerate some precision loss in order to achieve higher com-
pression rates. Decreasing precision is achieved by means of
a quantization step, whose resulting values are then com-
pressed by entropy coding after some prediction (relying on
some smoothness assumptions) is applied. Both steps con-
tribute to the compactness of the final result, but quantiza-
tion is intrinsically and irreversibly lossy, whereas predic-
tion is a perfectly reversible and lossless transformation of
the “signal” to make it fit for a more efficient subsequent
entropy coding.

3.2.1. Quantization

Instead of coding the vertex coordinates with the three
32-bit floats mentioned in Section 2, typical mesh geometry
coding schemes [5][27][29] uniformly quantize each of
them with 8-16 bits. Note that 16-bit integers are enough to
resolve 15 um details in a model of a human body, or 1 mm
ones in a model of a big building.

Chow [4] partitions the mesh into several regions and
adaptively chooses one quantization resolution per region
according to local curvature and triangle sizes. As the hu-
man system is more sensitive to normal than to geometric
distortion, Sorkine et al. [25] propose to apply the quantiza-
tion on a transformed coordinate space that concentrates the
quantization error at the low-frequency end of the spectrum,
thus preserving the fine normal variations over the surface,
even after aggressive quantization.

3.2.2. Prediction

Since most edges are short with respect of the model, adja-
cent vertices are in general close to each other, and the dif-
ferences between them small. Early work employed simple
delta coding [5] or linear prediction [27][29] along the ver-
tex ordering imposed by the coding of the connectivity,
yielding bitrates of some 13-18 bpv for 9-12 bits per coor-
dinate [5], or 13 bpv at 8-bit quantization resolution [27].
Despite the effectiveness of these methods, the induced
mesh traversal is still not optimal for geometry coding, and
that is why more recent techniques [15][17] focus on having
the geometry drive the mesh traversal.

4. PROGRESSIVE COMPRESSION

Progressive compression of 3D meshes is desirable for
transmission of complex meshes over networks with limited
bandwidth or to terminals with limited processing power.
The original mesh is transformed into a sequence (or a hier-
archy) of refinements applied to a simple, coarse mesh. Dur-
ing decoding, connectivity and geometry are reconstructed
incrementally from the bitstream until the mesh is rendered
in its full resolution or the transmission is cancelled by the
user. Progressive compression thus allows transmission and
rendering of different levels of detail (LODs).



4.1. Non-hierarchical refinement and coding

Hoppe [10] first introduced the concept of progressive mesh
coding with a new mesh representation called Progressive
Mesh (PM), which allows coding a mesh with a total of
around 35 bpv, including both connectivity and geometry
information. It consists of a base mesh and a sequence of
vertex split records, each specifying which vertex and cou-
ple of edges incident to it must be split, and the local ge-
ometry changes. From such a representation, it is straight-
forward to extract a LOD of the mesh with any desired
number of triangles by simply choosing the adequate prefix
of the vertex split sequence, which is streamed after the base
mesh has been transmitted.

Based on Hoppe’s PMs, and on the TS concept men-
tioned in Section 3.1, Taubin et al. [28] proposed the Pro-
gressive Forest Split (PFS) technique, which was able to
reduce the former’s bitrates at the expense of reduced
granularity: two successive LODs of a PFS set differ by a
group of vertex splits, instead of only one. Logically
enough, the highest compression ratios are achieved by
minimizing the number of LODs but, typically, it is possible
to remain slightly below 30 bpv for medium size meshes
coded with several LODs. TS and PFS were included in the
3D mesh coding (3DMC) toolset of MPEG-4 version 2 [20].

Pajarola and Rossignac [22] proposed the Compressed
Progressive Mesh (CPM) method, by improving on PFS
refinements, which also occur thanks to batches of vertex
splits. CPM uses the “butterfly” subdivision scheme [6] for
predicting the location of new vertices from those of
neighboring and already decoded ones, implicitly assuming
that the recovered mesh is smooth. CPM achieves bitrates in
the vicinity of 25 bpv for medium and large size meshes
progressively approximated with 7-15 LODs.

More recently, Alliez and Desbrun presented a novel
progressive 3D mesh coding technique [1] with higher com-
pression efficiency and finer granularity than PFS or CPM.
This technique yields, thanks to the use of a valence-driven
decimation approach leading to near-optimal connectivity
coding, and to improvements upon previous geometry com-
pression methods by decorrelating the normal and tangential
components of the surface, bitrates of around 20 bpv.

4.2. Remeshing and wavelet-based hierarchical coding

Traditional progressive coders aim to eventually recover the
quantized sample locations and original connectivity. For
small meshes with carefully laid out connectivity and sam-
ple locations, this is very appropriate. The situation is dif-
ferent for highly detailed, densely sampled meshes coming
from 3D scanning: since distortion is measured as geometric
distance, the sample locations and connectivity can be
treated as additional degrees of freedom to improve the rate-
distortion performance. As long as the final result has a geo-
metric error similar to that of the original approximation, the
actual sample locations and connectivity do not matter.

Figure 2: Remeshing of an arbitrary connectivity mesh

Moran [19] and, independently, Khodakovsky [12] pro-
posed slightly different hierarchical compression algorithms
based on subdivision surfaces and the wavelet transform.
An irregular base mesh, homeomorphic (i.e. topologically
equivalent) to the original one, is first obtained by mesh
simplification. This base mesh is later refined by recursively
subdividing each of its triangles into four and positioning
the generated vertices to lie in the original mesh [16]. The
arbitrary connectivity original mesh is therefore said to be
“remeshed to have semi-regular connectivity”: see Figure 2.

The connectivity of the semi-regular mesh can be effi-
ciently encoded, as it only depends on that of the base mesh
and the number of subdivisions. The geometry information
is that of the base mesh, plus a hierarchical set of wavelet
coefficients representing the differences between successive
LODs. The distribution of these wavelet coefficients is cen-
tered around zero and their magnitude decays at finer levels
with a rate related to the smoothness of the original surface.
This behavior of the magnitude of wavelet coefficients is
the key to hierarchical coding and justifies the choice of a
zerotree coder [24]. The results are about four times better
(in terms of reconstruction error for a given bitrate) than
those of CPM [22], providing even a better performance
than Touma’s single-rate coder [29].

Guskov et al. [9] proposed another wavelet coder based
on the normal mesh representation. During the subdivision
step, their algorithm restricts the position of the new vertices
to be in the normal direction of the surface. Therefore, only
1D coefficients are needed, which results in a 2-5 dB quality
improvement for the same bitrate, compared to the 3D coef-
ficients used by Khodakovsky.

The above techniques only produce signal-to-noise ra-
tio (SNR) scalable bitstreams. More recently, Avilés [3]
proposed an alternate wavelet-based coding technique tar-
geted at providing both spatial and SNR scalabilities, and
thus enabling the use of the same stream over heterogeneous
networks, and with a wide range of terminals. Gioia [7] also
carried some remarkable work on view-dependent transmis-
sion of wavelet-coded 3D models, whose outcome inspired
the WaveletSubdivisionSurface node of MPEG-4’s
AFX toolset [21].

Gu et al. [8] devised a technique for completely regular
remeshing of surface meshes using a rectangular grid. Sur-



faces of arbitrary genus must be cut to be homeomorphic to
a disc, then parameterized by minimizing a geometric-
stretch measure, and finally represented as a so-called ge-
ometry image that stores the geometry, the normals and any
attributes required for visualization purposes. Due to its
regular structure, geometry images can be compressed using
standard 2D image compression techniques.

5. CONCLUSION

This paper gives an overview on the state-of-the-art tech-
niques for the compression of static 3D triangle meshes,
which are still extremely used to model discrete surfaces.
The uncompressed size of a triangle mesh is in the order of
200 bits per vertex (bpv), but compression ratios of 15:1 or
more can be achieved. Different techniques must be used
depending on whether single-rate vs. progressive bitstreams
are sought; and, in the latter case, on whether or not hierar-
chically nested meshes are desirable during reconstruction.

Triangle meshes carry two distinct kinds of informa-
tion, geometry and connectivity, that are best compressed
separately, especially if the latter must be reconstructed ex-
actly, and therefore coded losslessly (geometry is always
coded in a lossy way due to vertex coordinate quantization).
In this case, a total bitrate of around 15-20 bpv is achievable
thanks to the best connectivity coders [2][29]. However, if a
progressive transmission [1][22] is sought, the total bitrate
usually exceeds 20 bpv and the connectivity of the original
mesh is only recovered at the end. Moreover, if the original
mesh can be remeshed because its connectivity is not essen-
tial, wavelet coding techniques based on subdivision sur-
faces [12][21] offer further compression.
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