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ABSTRACT

SSs (Subdivision Surfaces) are a powerful modelling para-
digm for truly hierarchical (instead of merely progressive)
3D surface (as opposed to mesh) coding. Two SS-based
tools of MPEG-4’s Animation Framework eXtension al-
low to derive a piecewise smooth surface from an initial
control mesh: if the subdivision process is run in its prede-
fined form, the initial mesh is simply smoothed; if 3D
details are added to the positions of the new vertices ap-
pearing after each subdivision step, a particular target sur-
face may be approximated with an increasing accuracy. In
both cases, multiresolution editing/animation is possible.

1. INTRODUCTION
1.1. Traditional surface tilings vs. subdivision surfaces

The MPEG-4 standard already included in its ver-
sion 2 [10] tools for the efficient coding of 3D surfaces,
but they were based in the simplest approximation of a
surface: the one resulting from tiling it with planar fac-
ets — in practice, with triangles, since they are the sim-
plest polygons. The problem with such a linear approxima-
tion to an arbitrarily complex surface is that hundreds of
thousands of elements (vertices, edges, facets) are easily
needed to obtain a reasonable approximation accuracy.
Moreover, the editing or animation of a polygonal mesh is
cumbersome, because its vertices are semantically unre-
lated, and must therefore be moved individually.

This is why most CAD (Computer-Aided Design) and
3D modelling commercial applications still use curved
patches of the NURBS (Non-Uniform, Rational, B-Spline)
family for tiling 3D surfaces. Patches provide a compact,
convenient method to generate piecewise smooth, higher-
order surfaces from relatively few control points, whose
movement deforms locally the surface. However, patch
control grids must be perfectly regular, so modelling ob-
jects of arbitrary topology with NURBS introduces non-
trivial patch-stitching and curve-trimming difficulties.
Furthermore, when modelling intricate surfaces, a large
number of tiles (either curved or planar) are needed to
describe high-frequency regions, so patches may not pro-
vide a much more compact solution than polygons.
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Figure 1: Splitting an icosahedron to get a sphere (1% step).

SSs (Subdivision Surfaces) [14][9] establish a bridge be-
tween polygons and patches, as subdivision schemes de-
fine simple and efficient mechanisms to derive a smooth
surface from an initial control polyhedron of arbitrary
topology. Indeed, SSs are defined as the limit of a refine-
ment process of both the connectivity and the geometry of
a planar mesh which recursively splits each of its elements
(usually its facets) into several ones (usually four: see
Figure 1). If this process is carefully designed, the mesh
tends to a limit surface as smooth as NURBS-based ones.

Subdivision is extremely useful for approximating and
manipulating a surface at different LODs (Levels Of De-
tail). The successive control meshes, usually called LODs
themselves, are pyramidally nested, and define inherently
a multiresolution model of the limit 3D surface, as the
vertex positions of different LODs are hierarchically re-
lated: those of vertices of LOD n (i.e., appearing at the 1™
subdivision step) are determined by those of some set of
neighbour vertices of LOD n—1, ..., in turn determined by
those of the initial (LOD 0) vertices. It is thus easy to per-
form large-scale edits, in which the movement of a few
vertices of a coarse control mesh drags a wide area of the
surface, as well as minute detail modifications, in which
only a few vertices of the finest meshes are displaced.

1.2. Subdivision surfaces in MPEG-4

SSs in the AFX (Animation Framework eXtension) [11]
toolset, to be released in version 5 of the MPEG-4 standard
at the end of 2002, come in two flavours, depending on
whether the positions of the new vertices appearing after
each subdivision step may be modified or not before split-
ting the mesh again. In both cases, a piecewise smooth
limit surface is obtained by subdividing the initial control
mesh. But in the “basic SSs setting” (described in section



2), that limit surface is completely defined by the initial
control mesh, which is simply smoothed, whereas in the
“detailed/wavelet SSs scenario” (see section 3), the aim is
to approximate a particular target surface with an increas-
ing accuracy thanks to the 3D details added to the pre-
dicted new vertices at each step of the subdivision process.

2. BASIC SUBDIVISION SURFACES
2.1. Traditional subdivision schemes

One of the main differences between subdivision schemes
resides in the kind of polygons they act upon: the (non-
smoothing) midpoint scheme operates on triangles only, as
do Loop’s [6] and Dyn’s “butterfly” [3]; instead, Catmull-
Clark’s [2] accepts generic polyhedra, which are turned
into quadrilateral meshes in a pre-processing step. Another
key difference between subdivision schemes is their inter-
polating vs. approximating character: in the case of inter-
polating schemes, like the midpoint or butterfly ones, the
limit surface interpolates all vertices of all control meshes;
for approximating ones, like Loop’s or Catmull-Clark’s,
control points need not lie on the limit surface.

2.2. Normal control and tagging
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Figure 2: Normal control: (a) surface with convex corners;
(b) Prescribed normals at each corner. (c) Smooth surface.
(d) Same control mesh but all normals vertical.

The original schemes of Loop and Catmull-Clark suffer
from some problems addressed by Biermann [1]: by intro-
ducing sector tagging, correct treatment of concave/convex
corners, flatness modification within sectors, and boundary
and interior normal control are possible (see Figure 2).

All schemes allow edge and vertex tagging. Edges
may be tagged as “creased” to prevent locally the control
mesh smoothing (for instance, boundary edges are auto-
matically assigned crease tags). Moreover, vertices at ei-
ther side of a crease edge may be tagged as “creased” (to
join exactly two incident crease edges smoothly), “corner”
(to join two or more crease edges in a corner), or “dart” (to
have the crease edge blend smoothly into the surface). If
no vertex tags are specified, the default tags for vertices
with one, two, and three or more crease edges in their
neighborhood are dart, crease and corner respectively.

2.3. Extended Loop scheme
The extended Loop scheme is an enhancement of Loop’s

that allows the designer to work with quadrilateral-based
models, which are better suited to capturing the symme-

tries of natural and man-made objects, while ensuring that
the visualisation process can be optimised for a triangle-
only rendering pipeline. Furthermore, unlike quadrilateral-
based subdivision schemes such as Catmull-Clark’s, ex-
tended Loop offers the designer exact control over the
final model triangulation, which is essential for efficient
rendering of low polygon models.
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Figure 3: Extended Loop subdivision stencils for interior
smooth (a), interior dart (b), boundary/crease vertices (c)
and splitting interior (d), and boundary/crease edges (e).

Figure 3 shows the extended Loop subdivision stencils
used for repositioning old vertices (as with standard Loop,
corner vertices are never moved) and splitting edges. Solid
lines indicate original edges while dashed lines indicate
“invisible” edges (a tag used to keep track of edges pro-
duced by the triangulation pre-processing step). Stencils
(a), (b) and (c) show that repositioning old vertices is iden-
tical to standard Loop if invisible edges are ignored, with
one exception, stencil (b): if a vertex has two or less visi-
ble edges in its neighborhood, then the invisible edges are
included in the calculation. As with standard Loop,
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where £ is the number of visible edges (Figure 3a) or the
valence (visible + invisible edges) if the number of visible
edges is strictly less than three (Figure 3b). The stencil for
splitting boundary/crease edges (Figure 3f) is identical to
standard Loop, while splitting interior edges depends on
whether the edge in question is visible (Figure 3d-left) or
not (Figure 3d-right). If no visible edges exist for an end-
point then a full weight is used (Figure 3e).

(@) 2 (b)
Figure 4: (a) Interior, and (b) boundary/crease vertex
neighborhood used for normal calculation.



In order to perform operations such as lighting on the sub-
division surface, two tangent vectors are defined for each
type of vertex (interior, smooth crease, corner, dart).

For interior smooth and dart vertices of valence k
(Figure 4a), the tangents are defined as the weighted aver-
ages of the positions of the neighbour vertices:

t,=cv +c,v, +ev, Hoo ey,

t,=c,y,+cv, +te,vy ..+ v ey,
27i .
where ¢, = cosT. For boundary, crease and corner verti-

ces (Figure 4b), each sector between pairs of bound-
ary/crease edges will have a different pair of tangent vec-
tors that are defined as:
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where, foréd = % , w; is defined as:
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2.4. AFX’s SubdivisionSurface node

The SubdivisionSurface node allows the specification of a
tagged control mesh along with any associated texture
coordinate and color information. The subdivision scheme
can be Loop’s or Catmull-Clark’s, with optional sector
tagging and normal control specified through an array of
SubdivSurfaceSector nodes, or extended Loop.

3. WAVELET SUBDIVISION SURFACES
3.1. Progressive mesh vs. hierarchical surface coding

Progressive meshes, as first proposed by Hoppe [5] and
later improved by teams such as Taubin’s (whose work
was the basis for MPEG-4 version 2), provide an efficient
means to code a fine polygonal mesh M as a set of LODs
in a lossless way, at least in what concerns M’s connec-
tivity (the coding of M’s geometry is always lossy due to
the quantisation of vertex coordinates, although devoting
16 bits to each of {x, y, z} is enough to resolve 1 mm de-
tails in a model of a building ). But if M is only a piece-
wise linear approximation of a (most likely piecewise
smooth) given target surface, it makes no sense to insist on
coding its connectivity losslessly, because no particular
mesh is better than any of infinitely many other approxi-
mating the true surface within a certain tolerance.

In this sense, merely progressive coding of 3D meshes
is inferior to truly hierarchical coding of 3D surfaces. The
differential refinements that permit to go from one LOD to

the next, in a progressive mesh, are randomly located, and
there is no relationship between the elements of one LOD
and its immediate neighbours. In the case of the LOD sets
obtained with SSs, two consecutive LODs are also differ-
entially related, but there is a very clear pyramidal nesting
of their elements, which has many practical advantages.

In particular, such a pyramid of LODs is highly suit-
able for a hierarchical coding (and, hence, transmission) of
3D models thanks to MRA (MultiResolution Analysis)
techniques. The main idea behind MRA is to decompose a
signal into a coarse, low resolution/frequency part, plus a
collection of finer and finer details only observable at in-
creasing resolutions/frequencies. Wavelet-based MRA has
been successfully applied in the last decade to classic nD
signals (n=1 = audio; n=2 = still image; n=3 =
video) [13], but only recently extended to decompose sig-
nals defined over 2D manifolds (proper surfaces) [8].

Especially for signal transmission purposes, sub-band
decomposition is a very important concept. Not only does
it permit to send a coarse version of the signal first and
progressively refine it afterwards, but it also enables a
more compact coding of the information carried by signals
whose energy is mostly concentrated in their low fre-
quency part (in the case of surfaces: mostly smooth ones).

3.2. Subdivision regarded as a prediction mechanism

In a multiresolution predictive coding scheme, a succes-
sively approximated signal is decomposed into its coarsest
version plus a set of prediction errors, which are the differ-
ences between the original signal and the estimates based
on its successively refined versions. The predictor is usu-
ally designed to generate small prediction errors for mostly
smooth signals, like those encountered in practice, and is
thus able to transform a possibly energetic signal into a
low variance set of prediction errors. Entropy coding tech-
niques can be further applied to the prediction errors, to
represent the same amount of information with less data.

Subdivision can be seen as a multiresolution predic-
tive coding scheme, as the rules of a particular scheme are
indeed a prediction mechanism, in which the position of
new vertices are estimated with those of old ones. Suppose
a base control mesh M° has been extracted from a given
target surface 7, which has to be approximated by a set of
LODs constructed by subdividing M°. Suppose also, for
the sake of simplicity, that all vertices of M lie on M and
that an interpolating subdivision scheme is used. One can-
not expect the new vertices to lie precisely on 7, but noth-
ing prevents one from correcting their positions so that
they do, after the standard subdivision rules have mis-
placed them, and to use that modified mesh as the input
one for the next step of the subdivision process.

A hierarchical 3D model transmission scenario is then
obvious: after having transmitted M°, only the 3D details
to be added to the positions of the new vertices need to be
sent, if both encoder and decoder have previously agreed



upon a set of subdivision rules and hierarchy traversal
order. Those details can be seen as prediction errors, be-
cause they measure the difference between the predicted
vertices and the desired ones lying on 7.

3.3. Wavelet coding of 3D details

Consider a triangular scheme, and let M" be the n-th ca-
nonical quadrisection of a base mesh M and V" the matrix
whose i-th row holds the x, y and z coordinates of the i-th
vertex of M". It can then be written that the limit surface is

S =limM"and that V"*' =P" V", where P" is the global

n—0
subdivision matrix of the considered scheme for a given
base mesh connectivity and subdivision level n [8]. As
interesting subdivision schemes are local, the position of
any vertex of M""" depends on those of only a few vertices
of M", which means that P" is sparse and that a small por-
tion of it suffices to characterise the scheme: the local
subdivision matrix P, which depends on the connectivity,
but not on the level.

Following Lounsbery’s extension of classic MRA, it
is possible to express V"™ in terms of V" and D, a set of
wavelet coefficients corresponding to the details above, as:

n+l n n V"
Ve =P"Q )(D”] ,
where (P" Q") is an invertible matrix formed by P”, the
prediction operator, and Q", which interprets the wavelet
coefficients. P" and Q" are called the synthesis filters be-
cause they can be seen respectively as the low-pass and
high-pass reconstruction filters to be applied to (V" D")" to
generate V"', As (P" Q") is invertible, its inverse (A" B")",
a matrix formed by the analysis filters, can be used to ex-
tract from any semi-regular triangle mesh of the same base
connectivity as M a set of wavelet coefficients D".
Regarding computational efficiency, it is important to
note that both synthesis matrices, used during decoding,
are usually sparse, and can thus be applied in linear time,
but that only interpolating schemes yield sparse analysis
matrices, so linear encoding time is not achievable with
approximating schemes. As for compression efficiency, it
must be noted that Said’s SPIHT method [12] for zerotree-
like entropy coding can be used to exploit magnitude cor-
relation in the details set and significantly reduce its re-
dundancy, once a detail hierarchy is defined [7][9].

3.4. AFX’s WaveletSubdivisionSurface node

The WaveletSubdivisionSurface node allows the transmis-
sion of such a compact and hierarchical representation of a
3D surface by encapsulating a base mesh together with a
completely embedded bitstream containing the SPIHT-like
coded wavelet coefficients of the 3D details. Once the base
mesh is received, a few flag bits are read which indicate
what subdivision scheme/predictor (Loop, extended Loop,
butterfly or midpoint) was used to calculate the details and

whether they were expressed in one global or many local

coordinate frame(s). Then the details bitstream is decoded

using the SPIHT algorithm to recover the wavelet coeffi-
cients, with which the model is completely or partially
rebuilt, according to the terminal processing power.

One of the main features of this node is that the way
the bitstream is understood enables complete adaptivity
not only in the reconstruction but also in the transmis-
sion [4]. Indeed, there are three kinds of adaptive mesh
refinements:

1. View-dependency: wavelets are well located in space,
thus allowing a geometric sorting of the coefficients
according to the visibility of the portion of the mesh
they refine.

2. Sub-band decomposition: partial reconstruction can
be achieved by using a subset of the whole wavelet
coefficients set, instead of all of it.

3. Bitstream embedding: the SPIHT algorithm provides
by nature bitplane refinements of wavelet coefficients.

The structure of the bitstream is designed to enable such a

selective transmission by reading bitplanes one by one,

together with the information saying which part of the base
mesh is refined and at which precision.
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