
External Interaction Management of
VRML Scenes for E-Learning Applications

José M. Cubero , Luis Salgado , Jesús Bescós , Francisco Morán and Julián Cabrera
Grupo de Tratamiento de Imágenes

ETS. Ing. Telecomunicación
Universidad Politécnica de Madrid

28040 Madrid - Spain
+34.913.367.353

{jcm,lsa,fmb,jcq}@gti.ssr.upm.es

Escuela Politécnica Superior
Universidad Autónoma de Madrid

28049 Madrid - Spain
+34. 914.972.285

Jesus.Bescos@ii.uam.es

ABSTRACT
This paper describes an innovative approach to solve some of the
problems that arise when integrating virtual reality capabilities
into e-learning environments. The VRML representation of a
scene includes, along with its geometric description, a full speci-
fication of the student-scene interaction logic. This representation
is rendered by a browser, which also orchestrates the interaction
according to the logic. Such a mechanism implies reprogramming
and/or replicating partly the logic when modifying the interaction
scheme of a single scene for different students. It also prevents
any external access to student’s actions or scene reactions, which
is necessary for on-line evaluation or instruction. We propose to
expand the standard interaction mechanism of VRML so that both
the specification of the scene logic and the interaction flow are
managed by an external and centralized entity following a client-
server approach, hence solving the identified problems, while
additionally increasing design efficiency and content protection.

Categories and Subject Descriptors
H.5.1 [Information Interfaces and Presentation]: Multimedia
Information Systems - Artificial, augmented, and virtual realities;
K.3.1 [Computers and Education]: Computer Uses in Educa-
tion - Distance learning; C.2.4 [Computer-Communication
Networks]: Distributed Systems - Distributed Applications; K.6.4
[Management of Computing and Information Systems]: Sys-
tem Management - Centralization/decentralization; C.0 [Com-
puter Systems Organization]: General - System architectures.

General Terms
Algorithms, Management, Performance, Design, Human Factors.

Keywords
Virtual environments, e-learning applications, external interac-
tion, information management, client-server architecture, adapta-
bility, VRML, Java.

1. INTRODUCTION
The current development of Internet applications, and especially
of those based on computer graphics, allows for the use of e-
learning systems including not only multimedia information but
also Virtual Reality (VR) capabilities. Thanks to VR, a student
can believe to be transferred to another place and enjoy interac-
tive and immersive experiences, which can greatly improve
her/his learning process. Low-cost VR experiences are possible
with publicly available plug-ins for common web browsers,
which can interpret and render interactive 3D scenes described in
standard languages such as VRML [8][6] and X3D [9].
When immersed in a virtual world, a student experiences a scene
which follows a behavior pattern established by the objectives
imposed in the learning process. This pattern is implemented via
an interaction logic controlling the interaction flow between the
student and the virtual world, and therefore must be programmed
and adapted for every new learning situation.
3D scene modeling languages, like VRML, allow to code that
interaction logic in the same file where the geometric description
of the scene is defined. The interaction management is usually
event-based, an event being just some kind of basic information
message being sent or received by any scene object or node in an
asynchronous way: active nodes (like sensors) defined in the
scene launch events that are just routed to other active nodes as a
basic means to modify their characteristics (e.g., their position).
In order to simulate more complex interactive situations, VRML
considers the possibility of defining intermediate script nodes
which accept input events, perform some processing according to
the received information, and generate the corresponding output
events, which are then routed to the desired nodes. These routing
and scripting mechanisms, which conform the interaction logic
implementing the scene behavior pattern, result in a traffic of
events [12] that contains all the information related to user-scene
interaction. This information flow is established between the
student and the browser that interprets and renders the coded
scene.
This scheme results in a lack of flexibility, from at least two
points of view. First, every desired modification of the behavior
pattern which controls the learning process implies the repro-
gramming of the interaction logic embedded in the same file
(structure) as the geometric description of the scene. Second, the
student’s actions cannot be inspected on-line by an external agent
(e.g., an evaluator) and the student’s perception of the scene can-

not be modified on-line according to the criteria of an external
agent (e.g., an instructor). These problems prevent any kind of
dynamic adaptation of the learning process in response to the
student’s actions, which is one of the main features that e-learning
technology can provide over traditional educational paradigms.
In order to solve the first problem, some works propose to sepa-
rate the interaction logic from the local machine where the scene
is rendered [1]. We propose to deepen into this approach and
solve all the identified problems via the inclusion of a client-
server scheme not just intended to centralize course management
(an architecture frequently used in e-learning systems [12][2][3])
but specifically targeted at the management of the interaction
information flow. This innovative approach completely decouples
the behavior pattern of the scene from its geometric description,
hence reinforcing the reusability of the models, which may be
linked to different logics, as well as the flexibility in the design,
as parallel developments of the geometry and the logic can be
carried out almost independently.
Moreover, although the scene geometry has to be available in the
client for rendering, it is mostly useless (at least, from an educa-
tional viewpoint) without the behavior pattern, which is kept at all
times in the server, so the overall scene is inherently protected
against undesired copies or misuse.
Additionally, our approach enables to achieve on-line inspection
and adaptation of the interaction flow between several students
(i.e., several clients), each having her/his own virtual learning
environment independent from the others, and a single evaluation
and instruction center (i.e., the server). An example is shown in
Figure 1. Three students are working on the same exercise devel-
oped in a specific virtual environment. In a specific moment, the
student number 2 shows a higher level of experience. Then, the
instructor, located at the server machine, decides to increase the
difficulty of his/her exercise changing on-line the illumination
conditions of the scene, from daylight to nightlight. The student
number 2 continues his/her exercise in those conditions while the
rest of the students develop the exercise with the initial illumina-
tion. Our approach allows this kind of on-line interaction.

The architecture proposed in this paper is being used in the on-
going EU-funded research project “Self Learning Integrated
Methodology –Virtual Reality Tool” (SLIM-VRT, IST-2001-
33184) [11]. Section 2 summarizes the VRML standard interac-
tion mechanism and Section 3 describes the overall architecture
proposed to modify it. Section 4 delves into some interesting
implementation details and Section 5 describes the performed
tests. Finally, Section 6 concludes the paper.

2. VRML INTERACTION MANAGEMENT
The VRML standard mechanism for managing the interaction
between the user (i.e., the student, in an e-learning application)
and the virtual scene can be summarized in three steps:

• Identification and unique labeling of the scene objects that will
provide interaction capabilities.

• Definition, for these objects, of the input events they are sensi-
ble to and/or the output events they generate.

• Establishment of routes between pairs of objects via linking the
input events of one with the output events of another. Accord-
ing to these routes of interaction, the VRML browser delivers
properly each generated output event to the object designed to
receive it. The receiver object can be directly modified using
the information provided by the output event but, to simulate
complex situations, a script can process the original output
event and yield one or more output events based on it. The sys-
tem described here exploits this mechanism by the use of the
Scripting Authoring Interface (SAI).

The management of a VRML scene generates events continu-
ously. VRML does not distinguish between discrete events, such
as those generated as the user activates a TouchSensor node, and
continuous events, i.e., those generated by sampling over time
conceptually continuous variables, such as those generated by a
position sensor, a time sensor or the user’s action on mobile ob-
jects, typically registered by the so-called “drag sensors” (Cyl-
inderSensor, PlaneSensor and SphereSensor). For these continu-
ous events, an ideal implementation of a VRML browser would
generate infinite samples. Actually, the sampling frequency de-
pends on the particular implementation of the browser, and typi-

Figure 1. Example of modification of the student virtual environment conditions

cally matches the number of rendered frames per second. In most
applications, the number of such events is much more than
needed to control the user’s actions [12], so there is a need to
filter them out to improve significantly the efficiency of the final
system.

3. SYSTEM ARCHITECTURE OVERVIEW
Figure 2 presents a block diagram of the proposed client-server
Interaction Management System (IMS) architecture. It allows
user-scene interactions to be managed by an external entity called
Virtual Reality Information Manager (VRIM), which implements
the virtual scene interaction logic. It typically runs on a remote
server and should operate in real time, network bandwidth permit-
ting.
The IMS implements a bidirectional event-based communication
between the virtual scene and the VRIM on top of a TCP/IP link.
It involves several modules and interfaces: the External Interac-
tion Manager (EIM) at the client side, and the External Interac-
tion Server (EIS), together with its External Interaction API (EI
API), at the server side.
The EIM is a module that, on one side, handles the exchange of
VRML events with the scene through the External Interaction
Definition (EID) SAI and, on the other, establishes a TCP con-
nection with the EIS, which later follows the External Interaction
Protocol (EIP). The VRML events are hence directed from/to the
EIM to/from the EIS, which further communicates with the
VRIM via the EI API.
The remainder of this Section gives a functional overview of
these interfaces, modules and protocols. Section 4 gives a more
detailed description of the modules, of which most have been
implemented in Java to ensure portability and to take advantage
of the Java support offered by VRML.

External Interaction Definition
The interaction, that is managed outside of the virtual scene, has
to be defined anyway according to the VRML standard mecha-
nisms introduced in Section 2: it is necessary to specify which
objects will be subject to the external interaction, and which type
of information they will either provide or accept. This specifica-
tion, the set of rules and labels that should be added to the geo-
metric description of the scene, is identified as External Interac-
tion Definition (EID) in Figure 2. It consists of the list of the
VRML events of the objects allowing external interaction man-
agement, and of several parameters required for the proper opera-
tion of the EIM.

External Interaction Manager
The External Interaction Manager (EIM in Figure 2) is the script
in charge of establishing a TCP connection with the EIS in order

to exchange events from the VRML browser, where the scene is
rendered, to the VRIM and vice versa.
The EIM procedures are called from a VRML Script node of the
scene. When the scene is rendered, the EIM establishes a TCP
communication with the EIS, which should be available via an IP

address (or a valid DNS name) defined by an input parameter,
also referenced in the VRML Script node. Every event routed
from the scene to the EIM is processed by this module and sent to
the EIS through TCP messages that follow the EIP. When the
browser is closed or another VRML scene is loaded, the EIM
detects it and automatically shuts down the TCP connection with
the EIS.

External Interaction Server
The main function of the External Interaction Server (EIS) is to
act as a TCP server accepting connections from multiple EIM
clients, and holding bidirectional communications of events with
them according to the EIP.

External Interaction Protocol
The External Interaction Protocol (EIP) regulates the communica-
tion of asynchronous messages between the EIM and EIS to allow
the transmission of events produced by the user interaction within
the virtual scene to/from the VRIM.

External Interaction API
The External Interaction API (EI API) is the interface between
the EIS and the VRIM that allows an independent and possibly
parallel implementation of both modules. The EIS functionality
(i.e., manage the TCP communication) is completely independent
from the particular virtual scene, whereas the VRIM implementa-
tion fully depends on it, as it manages the user’s actions and the
corresponding scene reactions. Therefore, the EI API allows a
flexible, efficient and updatable implementation of the interaction
management.

Virtual Reality Information Manager
The Virtual Reality Information Manager (VRIM) implements the
behavior pattern of the scene. It is able to manage simultaneously
the information provided by different instances of a scene being
rendered in different clients and interacted upon by different
users.
The VRIM usually receives VRML events related to the user-
scene interactions through the EIM, EIS and EI API, and sends
back VRML events in response and through the reverse path. But
the VRIM is also able to generate itself messages (events) to be
sent to the user at any time, e.g., upon the orders of an instructor.

Figure 2. Interaction Management System overview

4. DETAILED MODULES DESCRIPTION
4.1 External Interaction Events
To handle the different kinds of information, the generated Exter-
nal Interaction Events (EIE) are classified into three groups:

• Location Events, which indicate the position of the avatar,
representing the user in the scene rendered in the client.

• Timing Events, aimed at transmitting temporal information of
the client where the scene is being rendered.

• External Operation Events, which group the different VRML
events generated by the user interaction with specific objects in
the scene, together with the input events that will be sent by the
VRIM as a response to the user’s actions, modifying the ap-
pearance of the objects being rendered.

The first two types are intended to be used for tracking purposes,
e.g., to evaluate the user’s position (within the scene) or connec-
tion time (for how long the user is experiencing the scene), or
how much time the user spends to perform specific required ac-
tions.

The last one helps tracking the user’s interaction with specific
objects in the scene, and to route the corresponding responses
provided by the VRIM which modify the scene appearance ac-
cording to the specific implementation of the behavior pattern.

4.2 External Interaction Manager
A detailed block diagram of the EIM is presented in Figure 3. The
path followed by the different event types is identified through
the arrows communicating the different modules, the thick ones
representing VRML events and the thin ones the three kinds of
EIE (Location, Timing and External Operation Events).

Interface with the VRML Scene
The ClientVrml module acts as the interface with the VRML
browser. On one side, it extracts the input parameters and the
VRML events generated by the user’s interaction in the virtual
scene. On the other, it updates the scene with the information
provided by the External Operation Events received from the
VRIM, typically as a response to some previous incoming event
originated at the client, but possibly also as an event generated by
an instructor behind the VRIM.

Communication with the EIS
The ClientTCP module establishes a TCP connection with the
EIS. The IP address (or a valid DNS name) of the EIS is an input
parameter obtained from the EID.

Filtering of Continuous Events
For most applications, the number of continuously generated
events described in Section 2 is excessive to accurately control
the user’s interaction with the scene. The EIM design allows to
configure the number of such events in order to the application
requirements, thus reducing significantly the system communica-
tion overhead. The EIM sends events at intervals not less than a
minimum value specified in the scene through the EID. For in-
stance, the EOperationMgr module (see Figure 3) filters the
SFVec2f, SFVec3f and SFRotation VRML events continuously
generated by the CylinderSensor, PlaneSensor and SphereSensor
VRML nodes, respectively.
The continuous Location Events generated by the user’s motion
are filtered by the LocationMgr module and, as the EIM knows if
the scene is being rendered, it generates the Timing Events and
filters them with the TimingMgr module.

4.3 External Interaction Server
Figure 4 shows in detail the different modules that form the EIS.
The path followed by the different kinds of events is identified
through the arrows communicating the different modules.
The operation of the EIS can be described as follows.
The TCP server (EIServer in Figure 4) is set up initially to accept
connections from the client (thick and continuous arrow).
When a new client connection is requested, the server launches a
Client Manager (ClientMgr or simply CM) which handles the
communication with a particular user. Every CM keeps waiting
for the incoming events generated by the client (EIE from client)
to which it is connected.
Whenever an event arrives, a specific Event Manager (EventMgr
or simply EM) is created to process it by calling the appropriate
set of methods of the EI API: Location or Timing or External
Operation API.

Figure 3. Block diagram of the External Interaction Manager

On the other side, the events received from the VRIM are passed
to the appropriate CM, which forwards them to the client (EIE to
client).

4.4 External Interaction API
The Location and Timing Events can only be used in a unidirec-
tional way: from the scene to the VRIM, as they provide informa-
tion solely depending on the user’s operations at the client side.
Therefore, the Location and Timing API must be unidirectional.
On the other hand, the External Operation Events do usually
require bidirectional communication between the scene and the
VRIM, as the VRIM uses this type of events to control the opera-
tions performed by the user in the scene (incoming events), and to
send back modifications to the scene (outgoing events). Conse-
quently, the External Operation API must be bidirectional, and
appears twice in Figure 4, where the two paths of the incom-
ing/outgoing events have been separated for the sake of clarity.

4.5 Virtual Reality Information Manager
The VRIM implements a method for every function of the EI API
accessible from the EIS, i.e., the Location API, the Timing API
and the External Operation API. These are the methods that fi-
nally implement the behavior pattern of the virtual scene, i.e., the
number and type of events that will be generated as a response to
the user’s action or situation. This module, located at the server,
compiles the interaction logic that, with VRML standard mecha-
nisms, would have to be integrated either into the scene descrip-
tion file or in attached scripts, that would have to be located at the
client before any rendering of the scene could occur.
Although the VRIM can be programmed using Java as the rest of
the modules described above, it would perhaps be preferable to
use other more efficient high level programming languages.

5. EFFICIENCY EVALUATION
As in any client-server architecture, the efficiency issues related
to the number of clients that can be supported by a single server
are particularly relevant. In the case of our system, efficiency
tests have been carried out in which the computational load intro-
duced by the IMS has been evaluated by measuring the ratio of
the processor clock cycles used by the IMS at the server to handle
the correct transmission of events.
Two main system variables were found to affect significantly the
IMS server efficiency and have been considered during the tests:
the number of clients to be supported, and the continuous event

filtering parameter, i.e., the minimum interval between continu-
ous events transmitted from each client to the server. In normal
operation, user interactivity hardly generates a relevant number of
discrete events compared with the number of continuous events
(in particular, Location or Timing Events, which can be generated
and transmitted as much as one every rendered frame).
Two different scenarios have been considered. In the first one, a
predefined tour has been implemented in which the avatar is
being moved continuously within a simple virtual scene. In this
case, Location Events are continuously transmitted to the server.
In the second, an automatic generator of External Operation
Events has been implemented to simulate a user’s interaction with
an object generating continuous drag sensor events.
The overhead introduced by the proposed architecture was meas-
ured at both the client and server ends. As expected, the one im-
posed by the EIM at the client side was meaningless, while the
one of the EIS at the server side could be really significant de-
pending on the values of the system variables described above.

Table 1. Ratio (%) of processor clock cycles used by the server
 Number of clients
 1 2 3 4 5 6 7 8

0 1 8 10 11 13 17 21 30
40 1 2 3 4 5 7 8 10 LEI

(ms)
500 0 0 1 1 1 1 2 2

0 8 15 30 50 BLOCKED
40 2 5 8 10 13 15 18 22 EOEI

(ms)
100 1 3 5 6 8 9 10 12

The percentage of the processor clock cycles used by the server
with the two scenarios was measured on a PIV@2.66 GHz PC
with 512 MB of RAM, and is shown in Table 1. The first three
rows correspond to the first scenario, where the LEI value is the
Location Event (minimum) Interval in milliseconds. The last
three rows correspond to the second scenario, and EOEI stands
for External Operation Event (minimum) Interval.
As it can be observed, the main limiting factor is the EOEI, the
overhead imposed by the Location Events being significantly
lower for any number of clients. Therefore, as expected, it is
mandatory to filter the External Operation Events. However, it
has to be considered that these tests assume that the users at the
different clients are generating non-stop continuous events, some-
thing that, apart from Location and Timing Events, never happens
in real applications. According to the 12% in the rightmost, bot-
tom cell of Table 1, it is clear that many more than ten clients can

Figure 4. Diagram of the Java classes of the External Interaction Server

be supported by a single server with the correct transmission of
ten External Operation Events per second (i.e., one every 100 ms)
under this artificially extreme situation. Therefore, it can be ex-
pected that the required frequency of event transmission be met in
real applications.

6. CONCLUSIONS
The Interaction Management System (IMS) we propose allows
for the external management of the interaction-related informa-
tion generated by the actions of a student in a virtual scene, sepa-
rating the logic ruling the scene behavior from its geometric de-
scription. An entity completely external to the scene, the VR
Information Manager (VRIM), is able to monitor at a remote
server the actions the student performs at the client, and manages
remotely the behavior of the scene, modifying it when necessary.
The IMS helps to flexibly and efficiently model and program
interactive 3D scenes. Modifications of the logic of the scene,
which resides in the VRIM, do not imply modifications in its
geometric description. This enables transparency for the student
and parallel developments of the geometry and the logic of the
virtual environment. The IMS is modular, with well defined inter-
faces that allow easy modifications and evolutions of the system.
Tests developed on the IMS show its correct functioning even in
stressful situations, i.e., with too short a minimum interval be-
tween External Operation Events, which is the determinant factor
for the computational load at the server. In real applications, with
a reasonable number of clients and a normal value for that mini-
mum interval, the correct transmission of the number of events
required to effectively control the behavior of the scene can be
guaranteed.
The architecture we propose is being used in the EU-funded re-
search project “Self Learning Integrated Methodology –Virtual
Reality Tool” (SLIM-VRT, IST-2001-33184) [11], where an e-
learning application in a shipping environment is under develop-
ment. The particularities of this application have been addressed
on a case study based approach where the flexibility, reusability
and efficiency provided by the separation of the geometric de-
scription of the 3D scenes and the management of their logic are
proving to be extremely useful.
Future developments are foreseen in the following directions:

• Improved event filtering: currently, only the VRML events
generated by drag sensors are filtered, but it could probably be
advantageous to let the scene logic designer to add other events
to be filtered, and perhaps even to establish priorities among
events.

• Porting to X3D: the information types have been defined to be
as general as possible in the IMS, so an evolution to support
scenes described in X3D should only imply modifying the in-

terface with the scene (i.e., the ClientVrml module in the EIM),
the rest of the system being, in principle, independent of the
language used to describe the scene.

7. ACKNOLEDGEMENTS
This work has been partly supported by the Plan Nacional de
Ciencia y Tecnología of the Spanish Government under project
TIC2001-3069.

8. REFERENCES
[1] Bouras, Ch., Philopoulos, A., and Tsiatsos, Th. A Networked

Intelligent Distributed Virtual Training Environment: A first
Approach. International Workshop on Intelligent Multimedia
Computing and Networking (IMMCN 2000, a constituent of
JCIS 2000), 2000.

[2] Bouras, C., and Tsiatsos, Th. Distributed virtual reality:
building a multi-user layer for the EVE Platform. Elservier.
Journal of Networks and Computer Applications, No. 27,
2004.

[3] Chover, M., Belmonte, O., Remolar, I., Quirós. R., Ribelles,
J. Web-based Virtual Environments for Teaching. Eusro-
graphics/SIGGRAPH Workshop on Computer Graphics
Education (CGE 02), 2002

[4] Eckel, B. Thinking in JAVA. Prentice-Hall, 2000.
[5] Harold, E. R. JAVA Network Programming. O’Reilly, 2000.
[6] Hartman, J. and Wernecke, J. The VRML 2.0 Handbook.

Addison-Wesley, 1996.
[7] Hughes, M., Shoffner, M., and Hamner, D. JAVA Network

Programming. Manning, 1999.
[8] ISO/IEC 14772-1:1997. Information technology - Computer

graphics and image processing - The Virtual Reality Model-
ing Language. Part 1: Functional specification and UTF-8
encoding. ISO/IEC, 1997.

[9] ISO/IEC 19775:2004. Information technology - Computer
graphics and image processing - Extensible 3D (X3D).
ISO/IEC, 2004.

[10] Qingping, L. et al. A Novel Method for Supporting Collabo-
rative Interaction Management in Web-based CVE. Proceed-
ings of the ACM symposium on virtual reality software and
technology, 2003.

[11] SLIM-VRT (IST-2001-33184) EU-funded research project.
http://www.gti.ssr.upm.es./~slim/.

[12] Wolff, R., Roberts, D.J., and Otto, O. A study of Event Traf-
fic During the Shared Manipulation of Objects within a Col-
laborative Virtual Environment. The MIT Press. Presence,
Vol. 13, No. 3, June 2004.

