Depth map estimation using CNNs

 

Research  

 

GTI Data   

 

Open databases created and software developed by the GTI and supplemental material to papers.  

 

Databases  


SportCLIP (2025): Multi-sport dataset for text-guided video summarization.
Ficosa (2024):
The FNTVD dataset has been generated using the Ficosa's recording car.
MATDAT (2023):  More than 90K labeled images of martial arts tricking.
SEAW – DATASET (2022): 3 stereoscopic contents in 4K resolution at 30 fps.
UPM-GTI-Face dataset (2022): 11 different subjects captured in 4K, under 2 scenarios, and 2 face mask conditions.
LaSoDa (2022): 60 annotated images from soccer matches in five stadiums with different characteristics and light conditions.
PIROPO Database (2021):People in Indoor ROoms with Perspective and Omnidirectional cameras.
EVENT-CLASS (2021): High-quality 360-degree videos in the context of tele-education.
Parking Lot Occupancy Database (2020)
Nighttime Vehicle Detection database (NVD) (2019)
Hand gesture dataset (2019): Multi-modal Leap Motion dataset for Hand Gesture Recognition.
ViCoCoS-3D (2016): VideoConference Common Scenes in 3D.
LASIESTA database (2016): More than 20 sequences to test moving object detection and tracking algorithms.
Hand gesture database (2015): Hand-gesture database composed by high-resolution color images acquired with the Senz3D sensor.
HRRFaceD database (2014):Face database composed by high resolution images acquired with Microsoft Kinect 2 (second generation).
Lab database (2012): Set of 6 sequences to test moving object detection strategies.
Vehicle image database (2012)More than 7000 images of vehicles and roads.           

 

Software  


Empowering Computer Vision in Higher Education(2024)A Novel Tool for Enhancing Video Coding Comprehension.
Engaging students in audiovisual coding through interactive MATLAB GUIs (2024)

TOP-Former: A Multi-Agent Transformer Approach for the Team Orienteering Problem (2023)

Solving Routing Problems for Multiple Cooperative Unmanned Aerial Vehicles using Transformer Networks (2023)
Vision Transformers and Traditional Convolutional Neural Networks for Face Recognition Tasks (2023)
Faster GSAC-DNN (2023): A Deep Learning Approach to Nighttime Vehicle Detection Using a Fast Grid of Spatial Aware Classifiers.
SETForSeQ (2020): Subjective Evaluation Tool for Foreground Segmentation Quality. 
SMV Player for Oculus Rift (2016)

Bag-D3P (2016): 
Face recognition using depth information. 
TSLAB (2015): 
Tool for Semiautomatic LABeling.   
 

   

Supplementary material  


Soccer line mark segmentation and classification with stochastic watershed transform (2022)
A fully automatic method for segmentation of soccer playing fields (2022)
Grass band detection in soccer images for improved image registration (2022)
Evaluating the Influence of the HMD, Usability, and Fatigue in 360VR Video Quality Assessments (2020)
Automatic soccer field of play registration (2020)   
Augmented reality tool for the situational awareness improvement of UAV operators (2017)
Detection of static moving objects using multiple nonparametric background-foreground models on a Finite State Machine (2015)
Real-time nonparametric background subtraction with tracking-based foreground update (2015)  
Camera localization using trajectories and maps (2014)

 

                                                                                                                                                                                                                             
 
                                                                   
 
                                                                                                                                                             
 
      

 

 

Depth map estimation using CNNs

On February 26th at 12:00, Room B-222.

Depth map estimation from multiple images (views) is a still open problem present in several application domains such as Free Viewpoint Video, Augmented Reality or autonomous navigation vehicles. Similarly to what is happening in other computer vision and signal processing problems, the application of Deep Learning Techniques, namely Convolutional Neural Networks (CNNs), has challenged the “traditional” algorithms, obtaining very competitive results. Nevertheless, specific problems related to CNNs approaches such as generalization or computational complexity needs further research. In this talk, the problem of depth map estimation was presented and analyzed from a CNN point of view.

Julián Cabrera is Associate Professor in Signals, Systems and Radiocommunications at the Department at the Telecommunication School of the Universidad Politécnica de Madrid (UPM) and Researcher at Image Processing Group (Grupo de Tratamiento de Imágenes). He lectures in Digital Image Processing, Transmission systems, Digital Television Laboratory, Video coding, Audiovisual Communications, and Reinforcement Learning.  He has participated in more than 25 research projects funded by European programs, Spanish national programs and private companies. Current research interests cover several topics related to audio-visual communications, advance video coding for UHD, 3D and Multiview scenarios, optimization of adaptive streaming techniques based on reinforcement learning strategies, video subjective quality assessment for 3D video, adaptive streaming, super multiview and depth estimation and coding. He is working on the application of deep learning approaches to depth estimation and 3D reconstruction.

seminarjcq2