Ph.D thesis Andrés Bell

 

Research  

 

GTI Data   

 

Open databases created and software developed by the GTI and supplemental material to papers.  

 

Databases  


SportCLIP (2025): Multi-sport dataset for text-guided video summarization.
Ficosa (2024):
The FNTVD dataset has been generated using the Ficosa's recording car.
MATDAT (2023):  More than 90K labeled images of martial arts tricking.
SEAW – DATASET (2022): 3 stereoscopic contents in 4K resolution at 30 fps.
UPM-GTI-Face dataset (2022): 11 different subjects captured in 4K, under 2 scenarios, and 2 face mask conditions.
LaSoDa (2022): 60 annotated images from soccer matches in five stadiums with different characteristics and light conditions.
PIROPO Database (2021):People in Indoor ROoms with Perspective and Omnidirectional cameras.
EVENT-CLASS (2021): High-quality 360-degree videos in the context of tele-education.
Parking Lot Occupancy Database (2020)
Nighttime Vehicle Detection database (NVD) (2019)
Hand gesture dataset (2019): Multi-modal Leap Motion dataset for Hand Gesture Recognition.
ViCoCoS-3D (2016): VideoConference Common Scenes in 3D.
LASIESTA database (2016): More than 20 sequences to test moving object detection and tracking algorithms.
Hand gesture database (2015): Hand-gesture database composed by high-resolution color images acquired with the Senz3D sensor.
HRRFaceD database (2014):Face database composed by high resolution images acquired with Microsoft Kinect 2 (second generation).
Lab database (2012): Set of 6 sequences to test moving object detection strategies.
Vehicle image database (2012)More than 7000 images of vehicles and roads.           

 

Software  


Empowering Computer Vision in Higher Education(2024)A Novel Tool for Enhancing Video Coding Comprehension.
Engaging students in audiovisual coding through interactive MATLAB GUIs (2024)

TOP-Former: A Multi-Agent Transformer Approach for the Team Orienteering Problem (2023)

Solving Routing Problems for Multiple Cooperative Unmanned Aerial Vehicles using Transformer Networks (2023)
Vision Transformers and Traditional Convolutional Neural Networks for Face Recognition Tasks (2023)
Faster GSAC-DNN (2023): A Deep Learning Approach to Nighttime Vehicle Detection Using a Fast Grid of Spatial Aware Classifiers.
SETForSeQ (2020): Subjective Evaluation Tool for Foreground Segmentation Quality. 
SMV Player for Oculus Rift (2016)

Bag-D3P (2016): 
Face recognition using depth information. 
TSLAB (2015): 
Tool for Semiautomatic LABeling.   
 

   

Supplementary material  


Soccer line mark segmentation and classification with stochastic watershed transform (2022)
A fully automatic method for segmentation of soccer playing fields (2022)
Grass band detection in soccer images for improved image registration (2022)
Evaluating the Influence of the HMD, Usability, and Fatigue in 360VR Video Quality Assessments (2020)
Automatic soccer field of play registration (2020)   
Augmented reality tool for the situational awareness improvement of UAV operators (2017)
Detection of static moving objects using multiple nonparametric background-foreground models on a Finite State Machine (2015)
Real-time nonparametric background subtraction with tracking-based foreground update (2015)  
Camera localization using trajectories and maps (2014)

 

                                                                                                                                                                                                                             
 
                                                                   
 
                                                                                                                                                             
 
      

 

 

"Few-shot learning techniques for challenging applications: automatic mineral and vehicle recognition" 

Andrés Bell

E.T.S. Ing. Telecomunicación, Universidad Politécnica de Madrid, March 2022, "Cum Laude".

Ph.D. Thesis Advisor: Carlos Roberto del Blanco.

In this Ph.D. thesis, few-shot learning techniques have been proposed for object detection and semantic segmentation in innovative high-impact applications in the fields of geology and traffic safety. Their common problem, as in many realistic fields, is the difficulty to elaborate and annotate large databases, having available instead a limited number of samples. This, and given that the growth of few-shot learning encourages a fast and inexpensive deployment of machine learning systems, has led to develop automatic systems for two challenging applications: mineral recognition in drilled cores and in geological samples of minerals or rocks, and nighttime vehicle detection in images acquired by video cameras from traffic surveillance networks. For mineral recognition, two systems have been proposed as part of Innolog, a European Research Project. One of them is focused on processing hyperspectral imagery of drill-core boxes with a machine learning-compatible database creation procedure and an adapted deep neural network. The other system processes infrared and Raman spectral signatures using Siamese Networks and data transformation methods. Regarding vehicle detection, the developed system has been focused on the challenging and critical nighttime scenario. For this purpose, a novel framework based on a grid of foveal classifiers has been designed. Every classifier from the grid processes a global image descriptor (one computed per image) to locate vehicles. Only point-based annotations are required to train the classifiers, speeding up the database creation. Experimental results prove the effectiveness and real-time operation of the proposed systems.

andres4

andres3